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Abstract

Given an undirected graph, are there k matchings whose union
covers all of its nodes, that is, a matching-k-cover? A first, easy poly-
nomial solution from matroid union is possible, as already observed
by Wang, Song and Yuan (Mathematical Programming, 2014). How-
ever, it was not satisfactory neither from the algorithmic viewpoint nor
for proving graphic theorems, since the corresponding matroid ignores
the edges of the graph. We prove here, simply and algorithmically: all
nodes of a graph can be covered with k ≥ 2 matchings if and only if for
every stable set S we have |S| ≤ k|N(S)|. When k = 1, an exception
occurs: this condition is not enough to guarantee the existence of a
matching-1-cover, that is, the existence of a perfect matching, in this
case Tutte’s famous matching theorem (J. London Math. Soc., 1947)
provides the right ‘good’ characterization. The condition above then
guarantees only that a perfect 2-matching exists, as known from an-
other theorem of Tutte (Proc. Amer. Math. Soc., 1953). Some results
are then deduced as consequences with surprisingly simple proofs, us-
ing only the level of difficulty of bipartite matchings. We give some
generalizations, as well as a solution for minimization if the edge-
weights are non-negative, while the edge-cardinality maximization of
matching-2-covers turns out to be already NP-hard. We have arrived
at this problem as the line graph special case of a model arising for
manufacturing integrated circuits with the technology called ‘Directed
Self Assembly’. We will show connections to results by Michel on the
fractional matching polytope and some implications.
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